Nonresonance Conditions for Arrangements

نویسندگان

  • DANIEL C. COHEN
  • ALEXANDRU DIMCA
  • PETER ORLIK
  • P. ORLIK
چکیده

We prove a vanishing theorem for the cohomology of the complement of a complex hyperplane arrangement with coefficients in a complex local system. This result is compared with other vanishing theorems, and used to study Milnor fibers of line arrangements, and hypersurface arrangements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonresonance Conditions for a Nonlinear Hyperbolic Problem

In this paper we study the existence of periodic weak solutions of semilinear wave equations in the case of nonresonance. AMS subject classification: 35J65, 35J25.

متن کامل

Solvability of a one-dimensional quasilinear problem under nonresonance conditions on the potential

Problem of the type −∆pu = f(u) + h(x) in (a, b) with u = 0 on {a, b} is solved under nonresonance conditions stated with respect to the first eigenvalue and the first curve in the Fučik spectrum of (−∆p,W 1,p 0 (a, b)), only on a primitive of f .

متن کامل

Some Nonlinear Fourth-Order Boundary Value Problems at Nonresonance

This work is devoted to study the existence and the regularity of solutions of two nonlinear problems of fourth order governed by p-biharmonic operators in nonresonance cases. In the first problem we establish the nonresonance part of the Fredholm alternative. In the second problem, nonresonance relative to the first eigenvalue is considered for p = 2 at the case where the nonresonance is betwe...

متن کامل

Nonresonance Conditions for a Semilinear Beam Equation

In this paper we study the existence of periodic weak solutions of semilinear beam equations in the case of nonresonance. AMS Subject Classifications: 35J65, 35J25.

متن کامل

On Nonresonance Problems of Second-Order Difference Systems

Let T be an integer with T ≥ 3, and let T : {1, . . . , T}. We study the existence and uniqueness of solutions for the following two-point boundary value problems of second-order difference systems: Δu t − 1 f t, u t e t , t ∈ T, u 0 u T 1 0, where e : T → R and f : T × R → R is a potential function satisfying f t, · ∈ C1 R and some nonresonance conditions. The proof of the main result is based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002